Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 881
Filter
1.
Front Physiol ; 15: 1238533, 2024.
Article in English | MEDLINE | ID: mdl-38725571

ABSTRACT

Background: Transient hypoxia-induced deoxyhemoglobin (dOHb) has recently been shown to represent a comparable contrast to gadolinium-based contrast agents for generating resting perfusion measures in healthy subjects. Here, we investigate the feasibility of translating this non-invasive approach to patients with brain tumors. Methods: A computer-controlled gas blender was used to induce transient precise isocapnic lung hypoxia and thereby transient arterial dOHb during echo-planar-imaging acquisition in a cohort of patients with different types of brain tumors (n = 9). We calculated relative cerebral blood volume (rCBV), cerebral blood flow (rCBF), and mean transit time (MTT) using a standard model-based analysis. The transient hypoxia induced-dOHb MRI perfusion maps were compared to available clinical DSC-MRI. Results: Transient hypoxia induced-dOHb based maps of resting perfusion displayed perfusion patterns consistent with underlying tumor histology and showed high spatial coherence to gadolinium-based DSC MR perfusion maps. Conclusion: Non-invasive transient hypoxia induced-dOHb was well-tolerated in patients with different types of brain tumors, and the generated rCBV, rCBF and MTT maps appear in good agreement with perfusion maps generated with gadolinium-based DSC MR perfusion.

2.
Nat Rev Dis Primers ; 10(1): 33, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724526

ABSTRACT

Gliomas are primary brain tumours that are thought to develop from neural stem or progenitor cells that carry tumour-initiating genetic alterations. Based on microscopic appearance and molecular characteristics, they are classified according to the WHO classification of central nervous system (CNS) tumours and graded into CNS WHO grades 1-4 from a low to high grade of malignancy. Diffusely infiltrating gliomas in adults comprise three tumour types with distinct natural course of disease, response to treatment and outcome: isocitrate dehydrogenase (IDH)-mutant and 1p/19q-codeleted oligodendrogliomas with the best prognosis; IDH-mutant astrocytomas with intermediate outcome; and IDH-wild-type glioblastomas with poor prognosis. Pilocytic astrocytoma is the most common glioma in children and is characterized by circumscribed growth, frequent BRAF alterations and favourable prognosis. Diffuse gliomas in children are divided into clinically indolent low-grade tumours and high-grade tumours with aggressive behaviour, with histone 3 K27-altered diffuse midline glioma being the leading cause of glioma-related death in children. Ependymal tumours are subdivided into biologically and prognostically distinct types on the basis of histology, molecular biomarkers and location. Although surgery, radiotherapy and alkylating agent chemotherapy are the mainstay of glioma treatment, individually tailored strategies based on tumour-intrinsic dominant signalling pathways have improved outcome in subsets of patients.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/genetics , Glioma/physiopathology , Glioma/therapy , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/physiopathology , Prognosis , Child , Isocitrate Dehydrogenase/genetics , Mutation
3.
Neuro Oncol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695575

ABSTRACT

Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and the rising availability of neuroimaging. While most exhibit non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) working group. There also remains clinical equipoise on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive consensus narrative review directed towards clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, and management strategies for unique meningioma patient populations. In each section we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.

5.
Front Oncol ; 14: 1368606, 2024.
Article in English | MEDLINE | ID: mdl-38571509

ABSTRACT

Gliomas are a group of heterogeneous tumors that account for substantial morbidity, mortality, and costs to patients and healthcare systems globally. Survival varies considerably by grade, histology, biomarkers, and genetic alterations such as IDH mutations and MGMT promoter methylation, and treatment, but is poor for some grades and histologies, with many patients with glioblastoma surviving less than a year from diagnosis. The present review provides an introduction to glioma, including its classification, epidemiology, economic and humanistic burden, as well as treatment options. Another focus is on treatment recommendations for IDH-mutant astrocytoma, IDH-mutant oligodendroglioma, and glioblastoma, which were synthesized from recent guidelines. While recommendations are nuanced and reflect the complexity of the disease, maximum safe resection is typically the first step in treatment, followed by radiotherapy and/or chemotherapy using temozolomide or procarbazine, lomustine, and vincristine. Immunotherapies and targeted therapies currently have only a limited role due to disappointing clinical trial results, including in recurrent glioblastoma, for which the nitrosourea lomustine remains the de facto standard of care. The lack of treatment options is compounded by frequently suboptimal clinical practice, in which patients do not receive adequate therapy after resection, including delayed, shortened, or discontinued radiotherapy and chemotherapy courses due to treatment side effects. These unmet needs will require significant efforts to address, including a continued search for novel treatment options, increased awareness of clinical guidelines, improved toxicity management for chemotherapy, and the generation of additional and more robust clinical and health economic evidence.

6.
Neuro Oncol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598668

ABSTRACT

BACKGROUND: The utility of liquid biopsies is well documented in several extracranial and intracranial (brain/leptomeningeal metastases, gliomas) tumors. METHODS: The RANO (Response Assessment in Neuro-Oncology) group has set up a multidisciplinary Task Force to critically review the role of blood and CSF-liquid biopsy in central nervous system lymphomas, with a main focus on primary central nervous system lymphomas (PCNSL). RESULTS: Several clinical applications are suggested: diagnosis of PCNSL in critical settings (elderly or frail patients, deep locations, steroids responsiveness), definition of minimal residual disease, early indication of tumor response or relapse following treatments and prediction of outcome. CONCLUSIONS: Thus far, no clinically validated circulating biomarkers for managing both primary and secondary CNS lymphomas exist. There is need of standardization of biofluid collection, choice of analytes and type of technique to perform the molecular analysis. The various assays should be evaluated through well organized central testing within clinical trials.

7.
J Clin Oncol ; : JCO2301621, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608213

ABSTRACT

Effective diagnosis, prognostication, and management of CNS malignancies traditionally involves invasive brain biopsies that pose significant risk to the patient. Sampling and molecular profiling of cerebrospinal fluid (CSF) is a safer, rapid, and noninvasive alternative that offers a snapshot of the intracranial milieu while overcoming the challenge of sampling error that plagues conventional brain biopsy. Although numerous biomarkers have been identified, translational challenges remain, and standardization of protocols is necessary. Here, we systematically reviewed 141 studies (Medline, SCOPUS, and Biosis databases; between January 2000 and September 29, 2022) that molecularly profiled CSF from adults with brain malignancies including glioma, brain metastasis, and primary and secondary CNS lymphomas. We provide an overview of promising CSF biomarkers, propose CSF reporting guidelines, and discuss the various considerations that go into biomarker discovery, including the influence of blood-brain barrier disruption, cell of origin, and site of CSF acquisition (eg, lumbar and ventricular). We also performed a meta-analysis of proteomic data sets, identifying biomarkers in CNS malignancies and establishing a resource for the research community.

8.
Neurooncol Adv ; 6(1): vdae042, 2024.
Article in English | MEDLINE | ID: mdl-38596715

ABSTRACT

Background: The clinical management of patients with incidental intracranial meningioma varies markedly and is often based on clinician choice and observational data. Heterogeneous outcome measurement has likely hampered knowledge progress by preventing comparative analysis of similar cohorts of patients. This systematic review aimed to summarize the outcomes measured and reported in observational studies. Methods: A systematic literature search was performed to identify published full texts describing active monitoring of adult cohorts with incidental and untreated intracranial meningioma (PubMed, EMBASE, MEDLINE, and CINAHL via EBSCO, completed January 24, 2022). Reported outcomes were extracted verbatim, along with an associated definition and method of measurement if provided. Verbatim outcomes were de-duplicated and the resulting unique outcomes were grouped under standardized outcome terms. These were classified using the taxonomy proposed by the "Core Outcome Measures in Effectiveness Trials" (COMET) initiative. Results: Thirty-three published articles and 1 ongoing study were included describing 32 unique studies: study designs were retrospective n = 27 and prospective n = 5. In total, 268 verbatim outcomes were reported, of which 77 were defined. Following de-duplication, 178 unique verbatim outcomes remained and were grouped into 53 standardized outcome terms. These were classified using the COMET taxonomy into 9 outcome domains and 3 core areas. Conclusions: Outcome measurement across observational studies of incidental and untreated intracranial meningioma is heterogeneous. The standardized outcome terms identified will be prioritized through an eDelphi survey and consensus meeting of key stakeholders (including patients), in order to develop a Core Outcome Set for use in future observational studies.

9.
Neurooncol Adv ; 6(1): vdae030, 2024.
Article in English | MEDLINE | ID: mdl-38596717

ABSTRACT

Background: Meningioma clinical trials have assessed interventions including surgery, radiotherapy, and pharmacotherapy. However, agreement does not exist on what, how, and when outcomes of interest should be measured. To do so would allow comparative analysis of similar trials. This systematic review aimed to summarize the outcomes measured and reported in meningioma clinical trials. Methods: Systematic literature and trial registry searches were performed to identify published and ongoing intracranial meningioma clinical trials (PubMed, Embase, Medline, CINAHL via EBSCO, and Web of Science, completed January 22, 2022). Reported outcomes were extracted verbatim, along with an associated definition and method of measurement if provided. Verbatim outcomes were deduplicated and the resulting unique outcomes were grouped under standardized outcome terms. These were classified using the taxonomy proposed by the "Core Outcome Measures in Effectiveness Trials" (COMET) initiative. Results: Thirty published articles and 18 ongoing studies were included, describing 47 unique clinical trials: Phase 2 n = 33, phase 3 n = 14. Common interventions included: Surgery n = 13, radiotherapy n = 8, and pharmacotherapy n = 20. In total, 659 verbatim outcomes were reported, of which 84 were defined. Following de-duplication, 415 unique verbatim outcomes remained and were grouped into 115 standardized outcome terms. These were classified using the COMET taxonomy into 29 outcome domains and 5 core areas. Conclusions: Outcome measurement across meningioma clinical trials is heterogeneous. The standardized outcome terms identified will be prioritized through an eDelphi survey and consensus meeting of key stakeholders (including patients), in order to develop a core outcome set for use in future meningioma clinical trials.

10.
Cell ; 187(10): 2485-2501.e26, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653236

ABSTRACT

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Spatial Analysis , Transcriptome/genetics , Tumor Microenvironment , Proteomics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Gene Expression Regulation, Neoplastic
11.
Life (Basel) ; 14(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38541666

ABSTRACT

Homochirality is an obvious feature of life on Earth. On the other hand, extraterrestrial samples contain largely racemic compounds. The same is true for any common organic synthesis. Therefore, it has been a perplexing puzzle for decades how these racemates could have formed enantiomerically enriched fractions as a basis for the origin of homochiral life forms. Numerous hypotheses have been put forward as to how preferentially homochiral molecules could have formed and accumulated on Earth. In this article, it is shown that homochirality of the abiotic organic pool at the time of formation of the first self-replicating molecules is not necessary and not even probable. It is proposed to abandon the notion of a molecular ensemble and to focus on the level of individual molecules. Although the formation of the first self-replicating, most likely homochiral molecule, is a seemingly improbable event, on a closer look, it is almost inevitable that some homochiral molecules have formed simply on a statistical basis. In this case, the non-selective leap to homochirality would be one of the first steps in chemical evolution directly out of a racemic "ocean". Moreover, most studies focus on the chirality of the primordial monomers with respect to an asymmetric carbon atom. However, any polymer with a minimal size that allows folding to a secondary structure would spontaneously lead to asymmetric higher structures (conformations). Most of the functions of these polymers would be influenced by this inherently asymmetric folding. Furthermore, a concept of physical compartmentalization based on rock nanopores in analogy to nanocavities of digital immunoassays is introduced to suggest that complex cell walls or membranes were also not required for the first steps of chemical evolution. To summarize, simple and universal mechanisms may have led to homochiral self-replicating systems in the context of chemical evolution. A homochiral monomer pool is deemed unnecessary and probably never existed on primordial Earth.

12.
Neurooncol Pract ; 11(2): 132-141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38496908

ABSTRACT

Background: Incidence rates of glioblastoma in very old patients are rising. The standard of care for this cohort is only partially defined and survival remains poor. The aims of this study were to reveal current practice of tumor-specific therapy and supportive care, and to identify predictors for survival in this cohort. Methods: Patients aged 80 years or older at the time of glioblastoma diagnosis were retrospectively identified in 6 clinical centers in Switzerland and France. Demographics, clinical parameters, and survival outcomes were annotated from patient charts. Cox proportional hazards modeling was performed to identify parameters associated with survival. Results: Of 107 patients, 45 were diagnosed by biopsy, 30 underwent subtotal resection, and 25 had gross total resection. In 7 patients, the extent of resection was not specified. Postoperatively, 34 patients did not receive further tumor-specific treatment. Twelve patients received radiotherapy with concomitant temozolomide, but only 2 patients had maintenance temozolomide therapy. Fourteen patients received temozolomide alone, 35 patients received radiotherapy alone, 1 patient received bevacizumab, and 1 took part in a clinical trial. Median progression-free survival (PFS) was 3.3 months and median overall survival (OS) was 4.2 months. Among patients who received any postoperative treatment, median PFS was 3.9 months and median OS was 7.2 months. Karnofsky performance status (KPS) ≥70%, gross total resection, and combination therapy were associated with better outcomes. The median time spent hospitalized was 30 days, accounting for 23% of the median OS. End-of-life care was mostly provided by nursing homes (n = 20; 32%) and palliative care wards (n = 16; 26%). Conclusions: In this cohort of very old patients diagnosed with glioblastoma, a large proportion was treated with best supportive care. Treatment beyond surgery and, in particular, combined modality treatment were associated with longer OS and may be considered for selected patients even at higher ages.

13.
Neuro Oncol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502052

ABSTRACT

BACKGROUND: Standard treatment for patients with newly diagnosed glioblastoma includes surgery, radiotherapy (RT) and temozolomide (TMZ) chemotherapy (TMZ/RT→TMZ). The proteasome has long been considered a promising therapeutic target because of its role as a central biological hub in tumor cells. Marizomib is a novel pan-proteasome inhibitor that crosses the blood brain barrier. METHODS: EORTC 1709/CCTG CE.8 was a multicenter, randomized, controlled, open label phase 3 superiority trial. Key eligibility criteria included newly diagnosed glioblastoma, age > 18 years and Karnofsky performance status > 70. Patients were randomized in a 1:1 ratio. The primary objective was to compare overall survival (OS) in patients receiving marizomib in addition to TMZ/RT→TMZ with patients receiving only standard treatment in the whole population, and in the subgroup of patients with MGMT promoter-unmethylated tumors. RESULTS: The trial was opened at 82 institutions in Europe, Canada and the US. A total of 749 patients (99.9% of planned 750) were randomized. OS was not different between the standard and the marizomib arm (median 17 vs 16.5 months; HR=1.04; p=0.64). PFS was not statistically different either (median 6.0 vs. 6.3 months; HR=0.97; p=0.67). In patients with MGMT promoter-unmethylated tumors, OS was also not different between standard therapy and marizomib (median 14.5 vs 15.1 months, HR=1.13; p=0.27). More CTCAE grade 3/4 treatment-emergent adverse events were observed in the marizomib arm than in the standard arm. CONCLUSIONS: Adding marizomib to standard temozolomide-based radiochemotherapy resulted in more toxicity, but did not improve OS or PFS in patients with newly diagnosed glioblastoma.

14.
Neuro Oncol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466087

ABSTRACT

Brain tumor diagnostics have significantly evolved with the use of PET and advanced MRI techniques. In addition to anatomical MRI, these modalities may provide valuable information for several clinical applications such as differential diagnosis, delineation of tumor extent, prognostication, differentiation between tumor relapse and treatment-related changes, and the evaluation of response to anticancer therapy. In particular, joint recommendations of the RANO group, the EANO, and major European and American Nuclear Medicine societies highlighted that the additional clinical value of radiolabeled amino acids compared to anatomical MRI alone is outstanding and that its widespread clinical use should be supported. For advanced MRI and its steadily increasing use in clinical practice, the Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition provided more recently an updated acquisition protocol for the widely used dynamic susceptibility contrast perfusion MRI. Besides amino acid PET and perfusion MRI, other PET tracers and advanced MRI techniques (e.g., MR spectroscopy) are of considerable clinical interest and are increasingly integrated into everyday clinical practice. Nevertheless, these modalities have shortcomings which should be considered in clinical routine. This comprehensive review provides an overview of potential challenges, limitations and pitfalls associated with PET imaging and advanced MRI techniques in patients with gliomas or brain metastases. Despite these issues, PET imaging and advanced MRI techniques continue to play an indispensable role in brain tumor management. Acknowledging and mitigating these challenges through interdisciplinary collaboration, standardized protocols, and continuous innovation will further enhance the utility of these modalities in guiding optimal patient care.

15.
Lancet Oncol ; 25(3): 400-410, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423052

ABSTRACT

BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.


Subject(s)
Deep Learning , Glioblastoma , Humans , Artificial Intelligence , Biomarkers , Cohort Studies , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging , Retrospective Studies
16.
Neuron ; 112(9): 1456-1472.e6, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38412858

ABSTRACT

Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet-unknown functions. We applied laser speckle imaging, ultrafast ultrasound, and two-photon microscopy in a thrombin-based mouse model of stroke and fibrinolytic treatment to show that LMCs maintain cerebral autoregulation and allow for gradual reperfusion, resulting in small infarcts. In mice with poor LMCs, distal arterial segments collapse, and deleterious hyperemia causes hemorrhage and mortality after recanalization. In silico analyses confirm the relevance of LMCs for preserving perfusion in the ischemic region. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion and preventing futile recanalization after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for beneficial reperfusion after stroke.


Subject(s)
Collateral Circulation , Ischemic Stroke , Meninges , Reperfusion , Animals , Ischemic Stroke/physiopathology , Ischemic Stroke/therapy , Mice , Collateral Circulation/physiology , Humans , Reperfusion/methods , Meninges/blood supply , Male , Cerebrovascular Circulation/physiology , Mice, Inbred C57BL , Disease Models, Animal , Brain/blood supply , Thrombectomy/methods
17.
Front Oncol ; 14: 1342114, 2024.
Article in English | MEDLINE | ID: mdl-38357209

ABSTRACT

The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter region is a critical predictor of response to alkylating agents in glioblastoma. However, current approaches to study the MGMT status focus on analyzing models with non-identical backgrounds. Here, we present an epigenetic editing approach using CRISPRoff to introduce site-specific CpG methylation in the MGMT promoter region of glioma cell lines. Sanger sequencing revealed successful introduction of methylation, effectively generating differently methylated glioma cell lines with an isogenic background. The introduced methylation resulted in reduced MGMT mRNA and protein levels. Furthermore, the cell lines with MGMT promoter region methylation exhibited increased sensitivity to temozolomide, consistent with the impact of methylation on treatment outcomes in patients with glioblastoma. This precise epigenome-editing approach provides valuable insights into the functional relevance of MGMT promoter regional methylation and its potential for prognostic and predictive assessments, as well as epigenetic-targeted therapies.

18.
Neurology ; 102(5): e207959, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38335471

ABSTRACT

BACKGROUND AND OBJECTIVES: Hydrocephalus is a common radiologic sign in patients with leptomeningeal metastasis (LM) from solid tumors which can be assessed using the Evans index (EI). Here, we explored the prognostic value of ventricular size in LM. METHODS: We identified patients with LM from solid tumors by chart review at 3 academic hospitals to explore the prognostic associations of the EI at diagnosis, first follow-up, and progression. RESULTS: We included 113 patients. The median age was 58.3 years (interquartile range [IQR] 46.1-65.8), 41 patients (36%) were male, and 72 patients (64%) were female. The most frequent cancers were lung cancer (n = 39), breast cancer (n = 36), and melanoma (n = 23). The median EI at baseline was 0.28 (IQR 0.26-0.31); the EI value was 0.27 or more in 67 patients (59%) and 0.30 or more in 37 patients (33%). Among patients with MRI follow-up, the EI increased by 0.01 or more in 16 of 31 patients (52%), including 8 of 30 patients (30%) without and 10 of 17 patients (59%) with LM progression at first follow-up. At LM progression, an increase of EI of 0.01 or more was noted in 18 of 34 patients (53%). The median survival was 2.9 months (IQR 1-7.2). Patients with a baseline EI below 0.27 had a longer survival than those with an EI of 0.27 or more (5.3 months, IQR 2.4-10.8, vs 1.3 months, IQR 0.6-4.1) (HR 1.70, 95% CI 1.135-2.534, p = 0.0099). The median survival was 3.7 months (IQR 1.4-8.3) with an EI below 0.30 vs 1.8 months (IQR 0.8-4.1) with an EI of 0.30 or more (HR 1.40, 95% CI 0.935-1.243, p = 0.1113). Among patients with follow-up scans available, the overall survival was 9.4 months (IQR 5.6-21.0) for patients with stable or decreased EI at first follow-up as opposed to 5.6 months (IQR 2.5-10.5) for those with an increase in the EI (HR 1.08, 95% CI 0.937-1.243; p = 0.300). DISCUSSION: The EI at baseline is prognostic in LM. An increase of EI during follow-up may be associated with inferior LM progression-free survival. Independent validation cohorts with larger sample size and evaluation of confounding factors will help to better define the clinical utility of EI assessments in LM.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Meningeal Carcinomatosis , Humans , Male , Female , Middle Aged , Prognosis , Retrospective Studies , Lung Neoplasms/pathology , Meningeal Carcinomatosis/diagnostic imaging , Meningeal Carcinomatosis/secondary , Breast Neoplasms/pathology
20.
Neuro Oncol ; 26(5): 902-910, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38219019

ABSTRACT

BACKGROUND: Radiological progression may originate from progressive disease (PD) or pseudoprogression/treatment-associated changes. We assessed radiological progression in O6-methylguanine-DNA methyltransferase (MGMT) promoter-methylated glioblastoma treated with standard-of-care chemoradiotherapy with or without the integrin inhibitor cilengitide according to the modified response assessment in neuro-oncology (RANO) criteria of 2017. METHODS: Patients with ≥ 3 follow-up MRIs were included. Preliminary PD was defined as a ≥ 25% increase of the sum of products of perpendicular diameters (SPD) of a new or increasing lesion compared to baseline. PD required a second ≥25% increase of the SPD. Treatment-associated changes require stable or regressing disease after preliminary PD. RESULTS: Of the 424 evaluable patients, 221 patients (52%) were randomized into the cilengitide and 203 patients (48%) into the control arm. After chemoradiation with or without cilengitide, preliminary PD occurred in 274 patients (65%) during available follow-up, and 88 of these patients (32%) had treatment-associated changes, whereas 67 patients (25%) had PD. The remaining 119 patients (43%) had no further follow-up after preliminary PD. Treatment-associated changes were more common in the cilengitide arm than in the standard-of-care arm (24% vs. 17%; relative risk, 1.3; 95% CI, 1.004-1.795; P = .047). Treatment-associated changes occurred mainly during the first 6 months after RT (54% after 3 months vs. 13% after 6 months). CONCLUSIONS: With the modified RANO criteria, the rate of treatment-associated changes was low compared to previous studies in MGMT promoter-methylated glioblastoma. This rate was higher after cilengitide compared to standard-of-care treatment. Confirmatory scans, as recommended in the modified RANO criteria, were not always available reflecting current clinical practice.


Subject(s)
Brain Neoplasms , Chemoradiotherapy , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Glioblastoma , Promoter Regions, Genetic , Snake Venoms , Tumor Suppressor Proteins , Humans , Glioblastoma/genetics , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Glioblastoma/pathology , Glioblastoma/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/therapy , Brain Neoplasms/pathology , DNA Modification Methylases/genetics , Chemoradiotherapy/methods , Female , Male , DNA Repair Enzymes/genetics , Middle Aged , Aged , Tumor Suppressor Proteins/genetics , Adult , Magnetic Resonance Imaging , Follow-Up Studies , Disease Progression , Prognosis , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL
...